14 research outputs found

    Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making

    Get PDF
    The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1) data generation and acquisition level collecting heterogeneous data related to city operations, (2) data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3) application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture

    A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    No full text
    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances

    Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management

    No full text
    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism

    A Multi-Objective Approach for Optimal Energy Management in Smart Home Using the Reinforcement Learning

    No full text
    Maintaining a fair use of energy consumption in smart homes with many household appliances requires sophisticated algorithms working together in real time. Similarly, choosing a proper schedule for appliances operation can be used to reduce inappropriate energy consumption. However, scheduling appliances always depend on the behavior of a smart home user. Thus, modeling human interaction with appliances is needed to design an efficient scheduling algorithm with real-time support. In this regard, we propose a scheduling algorithm based on human appliances interaction in smart homes using reinforcement learning (RL). The proposed scheduling algorithm divides the entire day into various states. In each state, the agents attached to household appliances perform various actions to obtain the highest reward. To adjust the discomfort which arises due to performing inappropriate action, the household appliances are categorized into three groups i.e., (1) adoptable, (2) un-adoptable, (3) manageable. Finally, the proposed system is tested for the energy consumption and discomfort level of the home user against our previous scheduling algorithm based on least slack time phenomenon. The proposed scheme outperforms the Least Slack Time (LST) based scheduling in context of energy consumption and discomfort level of the home user

    Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities

    No full text
    The emergence of the Internet of Things (IoT) notion pioneered the implementation of various smart environments. Smart environments intelligibly accommodate inhabitants’ requirements. With rapid resource shrinkage, energy management has recently become an essential concern for all smart environments. Energy management aims to assure ecosystem sustainability, while benefiting both consumers and utility providers. Although energy management emerged as a solution that addresses challenges that arise with increasing energy demand and resource deterioration, further evolution and expansion are hindered due to technological, economical, and social barriers. This review aggregates energy management approaches in smart environments and extensively reviews a variety of recent literature reports on peak load shaving and demand response. Significant benefits and challenges of these energy management strategies were identified through the literature survey. Finally, a critical discussion summarizing trends and opportunities is given as a thread for future research

    Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making

    No full text
    The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1) data generation and acquisition level collecting heterogeneous data related to city operations, (2) data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3) application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture

    Scheduling Sensor Duty Cycling Based on Event Detection Using Bi-Directional Long Short-Term Memory and Reinforcement Learning

    No full text
    A smart home provides a facilitated environment for the detection of human activity with appropriate Deep Learning algorithms to manipulate data collected from numerous sensors attached to various smart things in a smart home environment. Human activities comprise expected and unexpected behavior events; therefore, detecting these events consisting of mutual dependent activities poses a key challenge in the activities detection paradigm. Besides, the battery-powered sensor ubiquitously and extensively monitors activities, disputes, and sensor energy depletion. Therefore, to address these challenges, we propose an Energy and Event Aware-Sensor Duty Cycling scheme. The proposed model predicts the future expected event using the Bi-Directional Long-Short Term Memory model and allocates Predictive Sensors to the predicted event. To detect the unexpected events, the proposed model localizes a Monitor Sensor within a cluster of Hibernate Sensors using the Jaccard Similarity Index. Finally, we optimize the performance of our proposed scheme by employing the Q-Learning algorithm to track the missed or undetected events. The simulation is executed against the conventional Machine Learning algorithms for the sensor duty cycle, scheduling to reduce the sensor energy consumption and improve the activity detection accuracy. The experimental evaluation of our proposed scheme shows significant improvement in activity detection accuracy from 94.12% to 96.12%. Besides, the effective rotation of the Monitor Sensor significantly improves the energy consumption of each sensor with the entire network lifetime

    Development of Computer-Aided Semi-Automatic Diagnosis System for Chronic Post-Stroke Aphasia Classification with Temporal and Parietal Lesions: A Pilot Study

    No full text
    Survivors of either a hemorrhagic or ischemic stroke tend to acquire aphasia and experience spontaneous recovery during the first six months. Nevertheless, a considerable number of patients sustain aphasia and require speech and language therapy to overcome the difficulties. As a preliminary study, this article aims to distinguish aphasia caused from a temporoparietal lesion. Typically, temporal and parietal lesions cause Wernicke’s aphasia and Anomic aphasia. Differential diagnosis between Anomic and Wernicke’s has become controversial and subjective due to the close resemblance of Wernicke’s to Anomic aphasia when recovering. Hence, this article proposes a clinical diagnosis system that incorporates normal coupling between the acoustic frequencies of speech signals and the language ability of temporoparietal aphasias to delineate classification boundary lines. The proposed inspection system is a hybrid scheme consisting of automated components, such as confrontation naming, repetition, and a manual component, such as comprehension. The study was conducted involving 30 participants clinically diagnosed with temporoparietal aphasias after a stroke and 30 participants who had experienced a stroke without aphasia. The plausibility of accurate classification of Wernicke’s and Anomic aphasia was confirmed using the distinctive acoustic frequency profiles of selected controls. Accuracy of the proposed system and algorithm was confirmed by comparing the obtained diagnosis with the conventional manual diagnosis. Though this preliminary work distinguishes between Anomic and Wernicke’s aphasia, we can claim that the developed algorithm-based inspection model could be a worthwhile solution towards objective classification of other aphasia types

    You Speak, We Detect: Quantitative Diagnosis of Anomic and Wernicke’s Aphasia Using Digital Signal Processing Techniques

    No full text
    Aphasia is a common adult language disorder acquired after a stroke, head injury, tumor, etc. Accurate diagnosis influences the prognosis of any speech and language disorder including aphasia. Therefore, in this paper we have proposed a semi-automated Aphasia diagnosis and classification framework employing feature extraction and pattern matching techniques of the digital signal processing (DSP). The proposed scheme evaluates the acoustic properties, time consumed, and speech characteristics for each language component i.e. naming, repetition, and comprehension. The naming and repetition tasks utilize DSP techniques. The proposed solution is highly scalable since it determines the diagnosis based on acoustic properties instead of the language characteristics. Thus, it eases extending into multiple languages. The mathematical relationships calculate the corresponding score for each component. The framework then determines the diagnosis according to the obtained scores. Since it occupies computational analysis of the speech signals, it reduces the subjectivity of the manual diagnosis process, meanwhile increasing the efficiency and accuracy by consistent diagnosis decisions. Finally, it distinguishes two sub types of Aphasia i.e. Anomic Aphasia and Wernicke\u27s Aphasia. The results clearly revealed the efficiency improvement achieved by replacing the live auditory model with pre-recorded auditory model
    corecore